Local tensor valuations
نویسندگان
چکیده
The local Minkowski tensors are valuations on the space of convex bodies in Euclidean space with values in a space of tensor measures. They generalize at the same time the intrinsic volumes, the curvature measures and the isometry covariant Minkowski tensors that were introduced by McMullen and characterized by Alesker. In analogy to the characterization theorems of Hadwiger and Alesker, we give here a complete classification of all locally defined tensor measures on convex bodies that share with the local Minkowski tensors the basic geometric properties of isometry covariance and weak continuity. 2010 Mathematics Subject Classification: primary 52A20, secondary 52A22
منابع مشابه
Local tensor valuations on convex polytopes
Local versions of the Minkowski tensors of convex bodies in ndimensional Euclidean space are introduced. An extension of Hadwiger’s characterization theorem for the intrinsic volumes, due to Alesker, states that the continuous, isometry covariant valuations on the space of convex bodies with values in the vector space of symmetric p-tensors are linear combinations of modified Minkowski tensors....
متن کاملTensor Valuations and Their Local Versions
The intrinsic volumes, recalled in the previous chapter, provide an array of size measurements for a convex body, one for each integer degree of homogeneity from 0 to n. For measurements and descriptions of other aspects, such as position, moments of the volume and of other size functionals, or anisotropy, tensor-valued functionals on convex bodies are useful. The classical approach leading to ...
متن کاملThe Space of Isometry Covariant Tensor Valuations
It is known that the basic tensor valuations which, by a result of S. Alesker, span the vector space of tensor-valued, continuous, isometry covariant valuations on convex bodies, are not linearly independent. P. McMullen has discovered linear dependences between these basic valuations and has implicitly raised the question as to whether these are essentially the only ones. The present paper pro...
متن کاملTensor valuations on lattice polytopes
The Ehrhart polynomial and the reciprocity theorems by Ehrhart & Macdonald are extended to tensor valuations on lattice polytopes. A complete classification is established of tensor valuations of rank up to eight that are equivariant with respect to the special linear group over the integers and translation covariant. Every such valuation is a linear combination of the Ehrhart tensors which is ...
متن کاملExtended morphometric analysis of neuronal cells with Minkowski valuations
Minkowski valuations provide a systematic framework for quantifying different aspects of morphology. In this paper we apply vector- and tensor-valued Minkowski valuations to neuronal cells from the cat's retina in order to describe their morphological structure in a comprehensive way. We introduce the framework of Minkowski valuations, discuss their implementation for neuronal cells and show ho...
متن کامل